Abstract:The accuracy of the initial state, including initial velocity, gravity direction, and IMU biases, is critical for the initialization of LiDAR-inertial SLAM systems. Inaccurate initial values can reduce initialization speed or lead to failure. When the system faces urgent tasks, robust and fast initialization is required while the robot is moving, such as during the swift assessment of rescue environments after natural disasters, bomb disposal, and restarting LiDAR-inertial SLAM in rescue missions. However, existing initialization methods usually require the platform to remain stationary, which is ineffective when the robot is in motion. To address this issue, this paper introduces a robust and fast dynamic initialization method for LiDAR-inertial systems (D-LI-Init). This method iteratively aligns LiDAR-based odometry with IMU measurements to achieve system initialization. To enhance the reliability of the LiDAR odometry module, the LiDAR and gyroscope are tightly integrated within the ESIKF framework. The gyroscope compensates for rotational distortion in the point cloud. Translational distortion compensation occurs during the iterative update phase, resulting in the output of LiDAR-gyroscope odometry. The proposed method can initialize the system no matter the robot is moving or stationary. Experiments on public datasets and real-world environments demonstrate that the D-LI-Init algorithm can effectively serve various platforms, including vehicles, handheld devices, and UAVs. D-LI-Init completes dynamic initialization regardless of specific motion patterns. To benefit the research community, we have open-sourced our code and test datasets on GitHub.
Abstract:SLAM plays a crucial role in automation tasks, such as warehouse logistics, healthcare robotics, and restaurant delivery. These scenes come with various challenges, including navigating around crowds of people, dealing with flying plastic bags that can temporarily blind sensors, and addressing reduced LiDAR density caused by cooking smoke. Such scenarios can result in over-degeneracy, causing the map to drift. To address this issue, this paper presents a multi-map LiDAR-inertial system (MM-LINS) for the first time. The front-end employs an iterated error state Kalman filter for state estimation and introduces a reliable evaluation strategy for degeneracy detection. If over-degeneracy is detected, the active map will be stored into sleeping maps. Subsequently, the system continuously attempts to construct new maps using a dynamic initialization method to ensure successful initialization upon leaving the over-degeneracy. Regarding the back-end, the Scan Context descriptor is utilized to detect inter-map similarity. Upon successful recognition of a sleeping map that shares a common region with the active map, the overlapping trajectory region is utilized to constrain the positional transformation near the edge of the prior map. In response to this, a constraint-enhanced map fusion strategy is proposed to achieve high-precision positional and mapping results. Experiments have been conducted separately on both public datasets that exhibited over-degenerate conditions and in real-world environments. These tests demonstrated the effectiveness of MM-LINS in over-degeneracy environment. Our codes are open-sourced on Github.
Abstract:Traditional unmanned aerial vehicle (UAV) swarm missions rely heavily on expensive custom-made drones with onboard perception or external positioning systems, limiting their widespread adoption in research and education. To address this issue, we propose AirSwarm. AirSwarm democratizes multi-drone coordination using low-cost commercially available drones such as Tello or Anafi, enabling affordable swarm aerial robotics research and education. Key innovations include a hierarchical control architecture for reliable multi-UAV coordination, an infrastructure-free visual SLAM system for precise localization without external motion capture, and a ROS-based software framework for simplified swarm development. Experiments demonstrate cm-level tracking accuracy, low-latency control, communication failure resistance, formation flight, and trajectory tracking. By reducing financial and technical barriers, AirSwarm makes multi-robot education and research more accessible. The complete instructions and open source code will be available at
Abstract:Zero-Shot Object Navigation (ZSON) requires agents to navigate to objects specified via open-ended natural language without predefined categories or prior environmental knowledge. While recent methods leverage foundation models or multi-modal maps, they often rely on 2D representations and greedy strategies or require additional training or modules with high computation load, limiting performance in complex environments and real applications. We propose WTRP-Searcher, a novel framework that formulates ZSON as a Weighted Traveling Repairman Problem (WTRP), minimizing the weighted waiting time of viewpoints. Using a Vision-Language Model (VLM), we score viewpoints based on object-description similarity, projected onto a 2D map with depth information. An open-vocabulary detector identifies targets, dynamically updating goals, while a 3D embedding feature map enhances spatial awareness and environmental recall. WTRP-Searcher outperforms existing methods, offering efficient global planning and improved performance in complex ZSON tasks. Code and more demos will be avaliable on https://github.com/lrm20011/WTRP_Searcher.
Abstract:Multi-robot navigation in complex environments relies on inter-robot communication and mutual observations for coordination and situational awareness. This paper studies the multi-robot navigation problem in unknown environments with line-of-sight (LoS) connectivity constraints. While previous works are limited to known environment models to derive the LoS constraints, this paper eliminates such requirements by directly formulating the LoS constraints between robots from their real-time point cloud measurements, leveraging point cloud visibility analysis techniques. We propose a novel LoS-distance metric to quantify both the urgency and sensitivity of losing LoS between robots considering potential robot movements. Moreover, to address the imbalanced urgency of losing LoS between two robots, we design a fusion function to capture the overall urgency while generating gradients that facilitate robots' collaborative movement to maintain LoS. The LoS constraints are encoded into a potential function that preserves the positivity of the Fiedler eigenvalue of the robots' network graph to ensure connectivity. Finally, we establish a LoS-constrained exploration framework that integrates the proposed connectivity controller. We showcase its applications in multi-robot exploration in complex unknown environments, where robots can always maintain the LoS connectivity through distributed sensing and communication, while collaboratively mapping the unknown environment. The implementations are open-sourced at https://github.com/bairuofei/LoS_constrained_navigation.
Abstract:Conventional single LiDAR systems are inherently constrained by their limited field of view (FoV), leading to blind spots and incomplete environmental awareness, particularly on robotic platforms with strict payload limitations. Integrating a motorized LiDAR offers a practical solution by significantly expanding the sensor's FoV and enabling adaptive panoramic 3D sensing. However, the high-frequency vibrations of the quadruped robot introduce calibration challenges, causing variations in the LiDAR-motor transformation that degrade sensing accuracy. Existing calibration methods that use artificial targets or dense feature extraction lack feasibility for on-site applications and real-time implementation. To overcome these limitations, we propose LiMo-Calib, an efficient on-site calibration method that eliminates the need for external targets by leveraging geometric features directly from raw LiDAR scans. LiMo-Calib optimizes feature selection based on normal distribution to accelerate convergence while maintaining accuracy and incorporates a reweighting mechanism that evaluates local plane fitting quality to enhance robustness. We integrate and validate the proposed method on a motorized LiDAR system mounted on a quadruped robot, demonstrating significant improvements in calibration efficiency and 3D sensing accuracy, making LiMo-Calib well-suited for real-world robotic applications. The demo video is available at: https://youtu.be/FMINa-sap7g
Abstract:Humans learn from observations and experiences to adjust their behaviours towards better performance. Interacting with such dynamic humans is challenging, as the robot needs to predict the humans accurately for safe and efficient operations. Long-term interactions with dynamic humans have not been extensively studied by prior works. We propose an adaptive human prediction model based on the Theory-of-Mind (ToM), a fundamental social-cognitive ability that enables humans to infer others' behaviours and intentions. We formulate the human internal belief about others using a game-theoretic model, which predicts the future motions of all agents in a navigation scenario. To estimate an evolving belief, we use an Unscented Kalman Filter to update the behavioural parameters in the human internal model. Our formulation provides unique interpretability to dynamic human behaviours by inferring how the human predicts the robot. We demonstrate through long-term experiments in both simulations and real-world settings that our prediction effectively promotes safety and efficiency in downstream robot planning. Code will be available at https://github.com/centiLinda/AToM-human-prediction.git.
Abstract:This paper investigates the stochastic moving target encirclement problem in a realistic setting. In contrast to typical assumptions in related works, the target in our work is non-cooperative and capable of escaping the circle containment by boosting its speed to maximum for a short duration. Considering the extreme environment, such as GPS denial, weight limit, and lack of ground guidance, two agents can only rely on their onboard single-modality perception tools to measure the distances to the target. The distance measurement allows for creating a position estimator by providing a target position-dependent variable. Furthermore, the construction of the unique distributed anti-synchronization controller (DASC) can guarantee that the two agents track and encircle the target swiftly. The convergence of the estimator and controller is rigorously evaluated using the Lyapunov technique. A real-world UAV-based experiment is conducted to illustrate the performance of the proposed methodology in addition to a simulated Matlab numerical sample. Our video demonstration can be found in the URL https://youtu.be/JXu1gib99yQ.
Abstract:We propose the Cooperative Aerial Robot Inspection Challenge (CARIC), a simulation-based benchmark for motion planning algorithms in heterogeneous multi-UAV systems. CARIC features UAV teams with complementary sensors, realistic constraints, and evaluation metrics prioritizing inspection quality and efficiency. It offers a ready-to-use perception-control software stack and diverse scenarios to support the development and evaluation of task allocation and motion planning algorithms. Competitions using CARIC were held at IEEE CDC 2023 and the IROS 2024 Workshop on Multi-Robot Perception and Navigation, attracting innovative solutions from research teams worldwide. This paper examines the top three teams from CDC 2023, analyzing their exploration, inspection, and task allocation strategies while drawing insights into their performance across scenarios. The results highlight the task's complexity and suggest promising directions for future research in cooperative multi-UAV systems.
Abstract:Research trends in SLAM systems are now focusing more on multi-sensor fusion to handle challenging and degenerative environments. However, most existing multi-sensor fusion SLAM methods mainly use all of the data from a range of sensors, a strategy we refer to as the all-in method. This method, while merging the benefits of different sensors, also brings in their weaknesses, lowering the robustness and accuracy and leading to high computational demands. To address this, we propose a new fusion approach -- Selective Kalman Filter -- to carefully choose and fuse information from multiple sensors (using LiDAR and visual observations as examples in this paper). For deciding when to fuse data, we implement degeneracy detection in LiDAR SLAM, incorporating visual measurements only when LiDAR SLAM exhibits degeneracy. Regarding degeneracy detection, we propose an elegant yet straightforward approach to determine the degeneracy of LiDAR SLAM and to identify the specific degenerative direction. This method fully considers the coupled relationship between rotational and translational constraints. In terms of how to fuse data, we use visual measurements only to update the specific degenerative states. As a result, our proposed method improves upon the all-in method by greatly enhancing real-time performance due to less processing visual data, and it introduces fewer errors from visual measurements. Experiments demonstrate that our method for degeneracy detection and fusion, in addressing degeneracy issues, exhibits higher precision and robustness compared to other state-of-the-art methods, and offers enhanced real-time performance relative to the all-in method. The code is openly available.